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Supersonic laminar boundary-layer equations near the plane of symmetry of a 
cone at incidence are treated by the similarity method. Numerical integration of 
differential equations governing such a flow is performed, taking into considera- 
tion the temperature dependence of the Prandtl number Pr and viscosity p 
throughout the boundary layer. On the leeward side, a detailed consideration of 
the solutions shows the existence of two solutions up to a critical incidence beyond 
which it appears that no solution may be found. Calculations carried out for a set 
of values of the external flow Mach number show up a significant effect of this 
parameter on the behaviour of the boundary layer. 

1. Introduction 
The existence of similar solutions for the supersonic laminar boundary layer 

near the symmetry plane of a circular cone a t  an angle of attack has been demon- 
strated by Hayes (1951) and Moore (1953). Such solutions are used by many 
authors including Reshotko (1957), Cooke (1966), Vvedenskaya (1966), Boericke 
(1970) and Roux (1971). The difficulties encountered in determining these 
solutions on the leeward side are particularly emphasized by Moore (1953). By 
taking the Prandtl number equal to 1, disregarding heat transfer and making an 
asymptotic solution analysis (q +m), he pointed out an azimuthal velocity 
gradient effect upon the existence and uniqueness of solutions. In  the present 
paper, the numerical integration of the system of differential equations governing 
the similar boundary-layer solutions, carried out for several values of a parameter 
N’, shows the existence of two solutions for M between 0 and a critical value 
ML;  the parameter M’, as defined by equation (9) below, is proportional to the 
azimuthal velocity gradient. It appears that no solution can be found for M’ less 
than M& and that for M‘ = MC, there is only one solution for the system. A 
detailed numerical integration of the solutions is performed for several Mach 
numbers and different .&/Ioe values, where I is the static enthalpy and the 
subscriptsp, 0 and e refer to the wall condition, stagnation condition and external 
flow respectively. Thus it is possible to state precisely the effect of these two 
parameters on the value of M k .  The variation of MA,. with Ne is obtained for 
I’/Ioe = 0.5. We are carrying out a similar investigation for other values of this 
parameter. 

I P L M  51 



2 B. Roux 

These results differ from the criteria for existence and uniqueness of solutions 
proposed by Moore (1953), thus confirming the criticisms formulated by Boericke 
(1970). 

On the other hand, as far as the solutions in the hypersonic limiting case, as 
obtained by Trella & Libby (1965), are concerned it must be stressed that their 
range of application when Me 1 is limited to the case of slender cones and that 
in this case solutions on the leeward side only exist for very small incidence, this 
incidence becoming smaller as Me increases. 

In the windward plane of symmetry (M’ > 0) ,  the similar solutions are useful as 
initial solutions for the determination of the boundary layer on both sides of the 
symmetry plane, by finite-difference methods for example. 

2. Governing equations 
The governing equations of motion are taken with the usual boundary-layer 

assumptions; their expression for a cone has been given by the author (1971) 
following a previous report by Cooke (1966). Moreover it is assumed that: (i) 
the flowing gas behaves as a perfect gas, (ii) the external flow is conical and 
isentropic, (iii) the wall is isothermal, (iv) the viscosity coefficient p and thermal 
conductivity E are dependent on temperature following the Sutherland law 
and a semi-empirical law given in the NBS Tables (Tables of thermodynamic 
and transport properties, NBS 1960) respectively. 

The existence of similar solutions for the resulting system of equations has 
been shown by Hayes and Moore. In  the symmetry plane we are seeking the 
following form for such solutions: 

where 7 is the similarity variable defined by 

and U is the meridional component of velocity, W the circumferential velocity, 
a, w transformed components of velocity and T the static enthalpy ratio, I/Ie .  The 
system reduces to a set of ordinary differential equations. 

15) dvldy = - +u - WM‘ , 



Supersonic laminar boundary layer of a cone 3 

where C = p,u/pepe and the parameter M’ is defined by 

where 0, is the semi-vertex angle of the cone. The boundary conditions are 

u = v = w = 0, T = Tp = Ip/Ie, for y = 0, (10) 

u + l ,  w+1, T - t l ,  as y-foo. (11) 

The above system forms a set of seven differential equations of the first order 
forthe followingvariables: u, Cduldy,  w, Cdwldy, v, T ,  ( C / P r ) d T / d y  (where C and 
Pr are explicit functions of temperature and hence of T and I,). In  order to use 
standard numerical methods for such a system the two-point boundary con- 
ditions are transformed into initial ones. It is therefore necessary to use an itera- 
tive process to correct all assumed initial conditions (that is, values of Cduldy ,  
Cdwldy, ( C / P r ) d T / d y  at y = 0 )  until the conditions for y+m are fulfilled. The 
iterative process chosen is similar to the one proposed by Dewey & Gross (1967) 
and has already been employed in the previous note Roux & Rey (1970). 

It should be mentioned that when the temperature dependence of C and Pr is 
taken into account the system (5)-(11) not only contains the parameters Me 
and M’, which appear explicitly, but also a third parameter I,. I, is determined 
for given values of Tp = IJI, = (Ip/Ioe) (1 + i ( y -  1)M:) and Ip. The present 
calculations are carried out with Ip/Ioe = 0.5 and with a value of the enthalpy I, 
corresponding to a wall temperature of 300 OK. 

Remarks concerning numerical calculation of the solutions 

As we shall see below, the calculations bring out two solutions for any value of 
M’ such that ME, < M’ < 0. The solutions of ‘type l ’ ,  permitting continuity at  
M’ = 0 with the solutions corresponding to M’ > 0, are obtained after 3 or 4 
iterations; the running time is then about 5min when 0 < y < 6 and Ay = 0.1. 
With Pr and C kept constant, this time is half as long. The determination of 
solutions of ‘type 2 ’ is much more difficult and one needs to guess the assumed 
initial conditions to within a certain accuracy; this difficulty is avoided by per- 
forming calculations gradually, from solutions of type 1. Furthermore, it is 
necessary to make the integration interval larger as M’+O (0 < 7 < 10 when 
I M’I < 0.01). At the same time the step size Ay has to be smaller to keep the 
precision constant. To obtain the solutions, 6 or 7 iterations are then needed and 
the running time may reach 20min when working with double precision on 
IBM 360-44. 

3. Existence of two classes of solutions 
For each numerical value of the Mach number considered, integration of the 

system (5)-(8) is first carried out for M’ > 0. Type 1 solutions are then sought 
for M’ varying gradually from 0 to a negative critical value M L  beyond which 
the numerical process is no longer convergent. The results are shown on table 1. 

1-2 



4 B. Roux 

Type 2 solutions are afterwards computed in the neighbourhood of ME, and 
sought for M gradually increasing up to a value very near 0. A detailed investi- 
gation performed for Mach number 5, up to M‘ = - shows (table 2) that 
us and Ti: tend to a finite positive limit and that wk behaves as I M’I -a with a + 1. 
In  the limiting case, M’ = 0, the routine used previously for the equations (5)-( 8) 
does not give a solution of type 2, since w; -+ co. However, the behaviour of w; 
when M‘ --f 0 found previously, led us to believe that for N’ = 0 the exponent a is 
equal to 1, and thus that a solution exists for which the product wM’ is not zero. 
The existence of such a solution is confirmed by a particular study described 
below. 

M’ 
1*0000 
0.5000 
o*oooo 

- 0~1000 
- 0.1500 
- 0.1600 
- 0.1620 
- 0.1625 

u:, 
1.00211 
0*84101 
0.61422 
0-53634 
0.46650 
0.43478 
0-42115 
0.41453 

wb 
4.2124 
3.7514 
3.3638 
3.4129 
3.6253 
3.7950 
3.8848 
3.9323 

TABLE 1. Type 1 solutions with 
Me = 5, I,,/C,, = 300 O K ,  Ioe/CD = 600 “K 

Ti 
1.9916 
1.6652 
1-2029 
1.0427 
0.8984 
0.8326 
0.8044 
0.7906 

M’ 

- 0.1600 
- 0.1500 
- 0.1250 
- 0~1000 
- 0.0500 
- 0~0100 
- 0~0010 
- 0~0001 

0~0000 

4 
0.37702 
0.34010 
0.28436 
0.23961 
0.15431 
0.07304 
0.04707 
0.04388 
0.04351 

M W : ,  
- 0*68090 
- 0.70140 
- 0.65923 
- 0.65936 
- 0.51810 
- 0-29256 
- 0.19751 
- 0.18477 
- 0.18329 

TABLE 2. Type 2 solutions with 
Me = 5, IJCD = 300 O K ,  Ioe/CD = 600 OK 

T:, 
0.71294 
0.63675 
0.52293 
0.43333 
0.13702 
0.12916 
0 * 0 8 7 6 4 
0.08261 
0.08204 

Two classes of solutions are hence found for Mir < M’ < 0. This result is in 
disagreement with the conclusion concerning the existence and the uniqueness of 
the solutions obtained by Moore (1953) in his analytical study of the asymptotic 
behaviour (for r-+co) of the solutions. Some criticisms have been formulated by 
Boericke (1970) about the validity of the criteria suggested by this author when 
assuming Pr = 1 and disregarding heat transfer. In our case, when extending the 
Moore’s analysis to equations (5)-( 8), we find nearly the same expressions for w as 
those obtained by this author (Moore 1953, equations 26(a), 26(b ) )  and we could 
also obtain similar criteria which would not be consistent with the numerical 
results. Consequently, iti appears that bhe determination of the asymptotic 
behaviour of the solutions as investigated by many authors after Hartree (1937) 
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does not make them able to prove the existence and uniqueness of the solutions 
directly. On the contrary, this investigation must only be used to obtain an 
analytical expression, when 7 -+a, for a solution already known (by a numerical 
method for example) up to some sufficiently large value of 7 for which the 
boundary conditions are nearly fufilled. 

Physical foundation of the solutions 
Of the two classes of solutions found here, type 2 solutions do not have any 
physical foundation. To demonstrate this it seems to be sufficient to show that 
these solutions do not tend to the zero incidence solutions when M' --f 0. 

When the cone incidence is zero M' is equal to 0. A similar analysis, which has 
been carried out by the author (1971), gives the following equations for the 
boundary layer in this case. 

dvldq = -#u, (12) 

with the boundary conditions 

u = v = 0, T = I,/Ioe, when 7 = 0, (15) 

u - f l ,  T + l ,  as q-tco. (16) 

If the Mach number Me is given this system admits only one solution. 
If we consider the type 1 solutions for the limiting case M' = 0, equations 

(5), (6) and (8) become the same as (12), (13) and (14) since w(q) keeps a finite 
value when M'+ 0. Equation (7) then takes the following form: 

where the variables u(q), v(q) ,  T(7) are independent of w(7) and regular on the 
whole integration interval 0 < 7 < qmax. Therefore w(q), which is a solution of 
the linear differential equation (4), has the property of being regular on the whole 
integration interval (Whittaker & Watson 1943, @10-21). The w(q) values are 
then finite and consequently d Wldq5 is equal to zero because dKIdq5 = 0 when the 
angle of attack i is zero. The solutions of (5)-( 8) for M' = 0 are indeed available 
in the zero incidence case. 

0 the product M'w(7) 
has been found to be of the same order as (M')l-a and thus does not tend to zero 
when the exponent a is 1. In  this case, the system (5)-(8) must be written as 
follows after multiplying all terms of (7) by M' and setting W = wM'. 

With the type 2 solutions, on the other hand, when 

avp7 = - gu - E ,  (18) 
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with the boundary conditions 

u = v = w = o  , Tp = I,/I,,, when 7 = 0, (22) 

u - f l ,  W - t O ,  T-tl ,  as q-tco. (23) 

This system is integrated by a numerical method quite similar to the previous 
one. When M' = 0 the system (16)-( 19) admits a solution W different from zero 
which is calculated in both cases of variable and constant (C = 1, Pr = 1) trans- 
port properties, for all the Mach numbers Me previously considered. The values 
of the derivatives a t  the wall of the solutions computed for Me = 5 are added at  
the bottom of the tables 2 and 4. 

Thus, in the case of type 2 solutions the system (5)-(8) is not reducible, on 
letting M' 3 0,  to the form (12)-( 14), valid for the zero incidence. Moreover, the 
solutions performed when integrating (18)-(21) in the limiting case M' = 0, 
show that wM' + 0. Consequently dW/@ is different from zero when i = 0, a 
result which has no physical meaning. 

The type 2 solutions are not physically sound but their mathematical existence 
compels us to find out to which class a calculated solution belongs. For this 
purpose an additional investigation is necessary. We suggest, for example, per- 
forming a calculation for an M' value very near the one considered and looking a t  
the increments ratio AuklAM'. Indeed, according to numerical results obtained 
in this study this ratio is always positive for the type 1 solutions and negative in 
the other case, as we shall see below. 

4. Mach number effect 
The numerical values of the derivative at the wall for solutions obtained in the 

Mach number range 1 < Me < 7 are plotted against M' in figures 1-3. As an 
example, the numerical values of these variables computed for Me = 5 are listed 
in tables 1 and 2 .  Computation of M L  is carried out with an accuracy of about 
2-5 x The results obtained for each Mach number make obvious a significant 
variation of ML, with Me (see figure 4). We shall see below that when M,+co, 
ME,+ 0. As for the distribution of the variables throughout the boundary layer, 
the profiles of type 1 solutions are shown in figures 5-7 for several M' values. In  
the case of type 2 solutions only the U/U,and I/I,profiles are presented (see figures 
8 and 9); the large variations of (d W/clq5)/(d~/clq5) for the different M' values make 
it difficult to draw them on the same graph. 

InJuence of transport properties 

As indicatedin 3 2, when the variation of the transport properties with temperature 
are taken into consideration the solutions depend on I, and thence on I,. The 
influence of Ip for' IJIOe = 0.5 is studied by integration of (2)-(8) in the case 
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- 0.5 0 0.5 1 - 1  

M' 
1 0 0.5 1 

M' 

FIGURE 1. Streamwise wall-shear parameter vs. M' (I,/Ioe = 0.5) .  

M' M' 

FIGURE 2. Cross-flow wall-shear parameter va. M' (IP/Ioe = 0.5). 
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Me = 5, taking Ip values corresponding to a wall temperature equal to 300 "K or 
to 500 "K. The difference between the Mi,. values obtained in both cases is less 
than 2 %. A set of calculations performed with C = 1 and Pr = 1, so that the 
solutions are independent of Ip, leads to an MLr value departing less than 6 yo 

M' 

FIGURE 3. Heat-transfer parameter WS. M' (19/Ioe = 0.5). 

0.6 

0.5 

0.4 

$' 0.3 
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0.2 

0.1 

0 
1 3 5 7 9 11 13 15 

Me 
FIGURE 4. Effect of the external flow Mach number on the value of 

MLr (IP,/Ioe = 0.5). 
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from those obtained in the two previous cases. The results performed for Me = 5 
are displayed in tables 3 and 4. Thus the MAT value depends essentially on the 
parameter Me (and also on Ip/Ioe as indicated by the &-st results of the investi- 
gation which we are carrying on at present). The assumption of the transport 
properties variations does not give rise to a significant effect. 

1 

s" 
- 0  5 

3 

2 

g 

1 

( 

I I I 

0 2 4 6 

II 
FIGURE 5. Streamwise velocity profiles, 

type 1 solutions. 

2 4 

11 

FIGURE 7. Temperature profiles, type 1 
solutions. 

?l 
FIGURE 6. Cross-flow velocity profiles, 

type 1 solutions. 

1 

s" 
5- 

0.5 

0 
7 - 4 6 8 

11 

FIGURE 8. Streamwise velocity profiles, 
type 2 solutions. 
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7 

FIGURE 9. Temperature profiles, type 2 solutions. 

M' 4 7 4  
1~0000 0.94449 4.0763 
0.5000 0.79181 3.6349 
0~0000 0.57514 3.2799 

- 0~1000 0.49812 3.3557 
- 0.1500 0.41545 3.6995 
-0.1520 0.40752 3.7646 
- 0.1530 0.39846 3.8172 
- 0.1535 0.39273 3.8612 

TABLE 3. Type 1 solutions with 
Me = 5, = 0.5, C = 1, Pr = 1 

Ti 
2-8335 
2.3754 
1.7254 
1.4944 
1.2464 
1.2172 
1.1954 
1.1782 

M' 4 M'w; 

- 0.1500 0-35034 - 0,63933 
- 0~1000 0-23793 - 0'62499 
- 0.0500 0.1527 1 - 0.49429 
- 0~0100 0.07088 - 0.27745 
- 0~0010 0.04464 - 0.18494 
- 0~0001 0.04143 -0'17249 
- 0~00001 0.04110 - 0.17119 
- 0~000001 0.04106 - 0.17106 

0~0000 0.04106 - 0'17103 

TABLE 4. Type 2 solutions with 
M e  = 5, Ip/Ioe = 0.5, C = I ,  Pr = 

T:, 
1.05102 
0.71378 
0.45814 
0.21264 
0.13393 
0.12428 
0.12329 
0.12319 
0.123 17 

1 

Hypersonic case 

For a given stagnation temperature, when N,+w, Ie+ 0. The static temperature 
is approaching zero in the outer part of the boundary layer and the assumed 
transport property laws are no longer applicable. However in this case it is 
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possible to follow Trella & Libby (1965) who assume that PT = 1 and C = 1. The 
system (5)-(8) is then written in the following form: 

(24) dvp7 = - aU - H& 
2 2 ,  

where & = $M'Toc/Te, 

W* = W K ~ T ~ ~ ,  

g = TTeIToe. 

The boundary conditions (9) and (10) become: 

u. = 1/ = w* = 0, gp = Ip/Io,, when 7 = 0, (31) 

u- f l ,  w*-fO, g+O, as q-foo. (32) 

The numerical integration of this system also brings out a minimum value &cr 

beyond which there is no solution. 
The derivative computed at the wall of both type 1 and 2 solutions is given in 

tables 5 and 6. Using (28), the existence of a limiting value & leads to: 

which gives the asymptotic behaviour of MEr when Me is large. The expression 
(33) shows that MI,+O when M,+oo. Furthermore, the MI, distribution found 
for I,/Ioe = 0.5 and for the Mach number range 7 < Me < 15 is shown (figure 4) to 
match the curve previously obtained in the supersonic case and with variable 
transport properties very well. For Me < 7 the hypersonic approximation is 
found to give MLr correctly down to Me = 5, for which the expression (33) leads to 
a value differing by less than 8 % from the numerical values found in the super- 
sonic case. 

Remarks about the results obtained for  Pr = 1 (tables 3-6) 

By combining the equations (6) and (8) when Pr = 1 it is easily found that the 
variables u and [T + &(y - 1)M: u2 - Tp]/(Toe -. T,) assume the same values for any 
7, and consequently admit the same derivative a t  the wall. This property, 
pointed out by Reshotko (1957) for the case when C = constant, is found to be 
also valid when C = C(7). Therefore the following relation between u; and Tk 
exists : 

T; 1 
1 + B(y- l)M," 1 - I.p/I*e* u; = 
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In the same way, one finds that for the solutions of (16)-( 19) uk = gL/( 1 - gJ and 
with the conditions leading to the results of tables 3 and 4, and 5 and 6, these 
relations become uk = +Tk, uk = 2gg respectively. 

oz. 
10*0000 
5.0000 
1~0000 
0~0000 

- 0.2500 
- 0*5000 
- 0.6000 
- 0.7000 
- 0.7005 

4 
0.91575 
0.8 0 8 5 2 
0.65400 
0.57514 
0.54453 
0.50046 
0.47287 
0.40443 
0.3 9 9 8 0 

*, 
w g  

0.28777 
0.32478 
0.39856 
0.45078 
0.47495 
0.51467 
0.54312 
0.62966 
0.63652 

TABLE 5 .  Type 1 solutions with 
Me + CO, I,,/IOe = 0.5, C = 1, Pr = 1 

g:, 
0.45788 
0.40426 
0.32700 
0.28757 
0,27226 
0.25023 
0.23643 
0.2022 1 
0.19990 

oz. 
- 0.700 
- 0.600 
- 0.500 
- 0.250 
- 0.100 
- 0.010 

0.000 

u:, 
0.39284 
0.30883 
0.26415 
0.16720 
0.10239 
0.04940 
0.04106 

Mfw;' 

- 0.45300 
- 0.48701 
- 0.47031 
- 0.3667 1 
- 0.25410 
- 0.13567 
- 0.11402 

TABLE 6. Type 2 solutions with 
Me + 03, I&,@ = 0.5, C = 1, Pr = 1 

ga 
0.19642 
0.15441 
0.13208 
0.0 8 3 6 0 
0.05119 
0.02470 
0.02053 

5. Determination of a critical incidence 
Detailed tables (Jones 1969) enable us to draw the curves M' = f(lMe) corre- 

sponding to different relative incidences i /S ,  for several cone angles (see figure 10). 
Then the N& distribution against He shown in figure 4 allows us to obtain, for 
a given 0, and for each Mach number value of the external flow, the critical 
incidence, beyond which there are no solutions in the leeward symmetry plane. 

Discussion of the results shown injgure 10 

In the case of a large cone angle, 0, > lo", Me tends to a limit when the Mach 
number at infinity 1M tends to infinity. These limiting values are approximately 
5-75 and 3.50 when 0, = 20' and 30" respectively and decreases sharply when 
0, is increasing. 

The solutions found for the hypersonic limiting case are only to  be used for 
slender cones (0, < 10'). It should also be noticed that in this case the present 
study shows that solutionsexist on the leeward side only for quite small incidences, 
the critical incidence decreasing as Me increases. 
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0.7 

0.6 

0.5 

0.4 

I 0.3 
k 

0.2 

0.1 

0 
1 2  3 4 5 6 7 8 9 10 1 2  3 4 5 6 

Me Me 

1 2 3 4 5 6  

Me Me 

FIGURE 10. Range of existence for solutions on the leeward plane. -, i/eC = 0.1; ---) 
i /0  c -  - 0 - 2 ; - - - , i / 0 , = 0 . 3 ;  - - - - - , ; / 0 , = 0 . 4 ; / 1 / / / /  ./, Mir = j"(Me). 0, = 5 O ,  loo, Z O O ,  

30" for (a),  (b ) ,  (c ) ,  (d )  respectively. 

6. Conclusion 
The similar solutions for the boundary-layer equations written in the symmetry 

plane of a cone at  incidence have been investigated in the supersonic case for 
several Mach numbers of the external flow (Me < 7). The hypersonic case has 
also been dealt with, but only when Pr = 1 and C = 1. 

The governing equations in both cases are shown to always have two solutions 
for each M' < 0 down to a critical value M&, below which there is no solution. 
This limiting value is strongly dependent on Me. The variation of ME, is obtained 
for the whole range 1 < Me < co when Ip/Ioe = 0.5; at the moment we are studying 
the influence of the parameter IJIOe. A knowledge of the curves Mir = f (Me) for 
different I,/Ioe values would allow us to forecast in each case the existence or 
non-existence of similar solutions near the symmetry plane of a circular cone at 
incidence as soon as the external flow conditions are known. 

The disappearance of the solution on the leeward side at  increasing incidence is 



14 B.  Roux 

perhaps connected with the onset of boundary-layer separation observed near the 
leeward symmetry plane in the case of 9’ half-angle cone and for M, = 7 (Guffroy, 
ROUX, Marcillat, Brun & Valensi 1968). To determine whether the two pheno- 
mena are indeed related to each other it would be necessary to make a systematic 
experimental study with different values of the cone angle. We are planning to 
carry out such a study in the case of I,/Ioe equal to 0.5. 

The author wishes t o  express his warmest thanks to Professor J.Valensi, 
Director of the Institut de MBcanique des Fluides de Marseille, for the constant 
interest he brought to this work, which he was kind enough to supervise. 
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